下载已关闭,仅供搜索参考

Field mold stress induced catabolism of storage reserves in soybean seed and the resulting deterioration of seed quality in the field

资料来自用户(Zoe)上传,若本站收录的文献无意侵犯了您的著作版权,请点击版权申明
文献出处
Journal of Integrative Agriculture  2022年02期
论文摘要

Excessive rainfall provides a favorable condition for field mold infection of plants, which triggers field mold(FM) stress. If FM stress occurs during the late maturation stage of soybean seed, it negatively affects seed yield and quality. To investigate the responses of soybean seed against FM stress and identify the underlying biochemical pathways involved, a greenhouse was equipped with an artificial rain producing system to allow the induction of mold growth on soybean seed. The induced quality changes and stress responses were revealed on the levels of both transcriptome and metabolome. The results showed that soybean seeds produced under FM stress conditions had an abnormal and inferior appearance, and also contained less storage reserves, such as protein and polysaccharide. Transcriptional analysis demonstrated that genes involved in amino acid metabolism, glycolysis, tricarboxylic acid, β-oxidation of fatty acids, and isoflavone biosynthesis were induced by FM stress. These results were supported by a multiple metabolic analysis which exhibited increases in the concentrations of a variety of amino acids, sugars, organic acids, and isoflavones, as well as reductions of several fatty acids. Reprogramming of these metabolic pathways mobilized and consumed stored protein, sugar and fatty acid reserves in the soybean seed in order to meet the energy and substrate demand on the defense system, but led to deterioration of seed quality. In general, FM stress induced catabolism of storage reserves and diminished the quality of soybean seed in the field. This study provides a more profound insight into seed deterioration caused by FM stress.

论文目录
关闭目录
1. Introduction
2. Materials and methods
  2.1. Plant materials and experimental design
  2.2. Seed mass and storage reserve measurements
  2.3. Transcriptome RNA-seq analysis
  2.4. Metabolomics analysis
  2.5. Data analysis
3. Results
  3.1. Phenotypic and quality changes of soybean seeds under FM stress
  3.2. Differentially expressed genes and KEGG pathway enrichment analysis
  3.3. Changes of primary metabolite profiles
  3.4. Changes of fatty acid profiles
  3.5. Changes of isoflavone profiles
  3.6. Metabolic discrimination visualization
4. Discussion
  4.1. FM stress severely impacted soybean production
  4.2. Reprogramming of primary metabolism under FM stress consumed the storage reserves
  4.3. Catabolism of fatty acids provided energy stock for the reprogramming responses
  4.4. Isoflavone biosynthesis was enhanced under FM stress as a defense response
5. Conclusion
Declaration of competing interest
全文下载